LatentForensics: Towards frugal deepfake detection in the StyleGAN latent space
Authors: Matthieu Delmas, Renaud Seguier
Published: 2023-03-30 08:36:48+00:00
AI Summary
This paper proposes a deepfake detection method operating in the latent space of StyleGAN, a generative adversarial network. This approach leverages StyleGAN's latent space structure to create a lightweight binary classification model that outperforms state-of-the-art methods, particularly when training data is scarce.
Abstract
The classification of forged videos has been a challenge for the past few years. Deepfake classifiers can now reliably predict whether or not video frames have been tampered with. However, their performance is tied to both the dataset used for training and the analyst's computational power. We propose a deepfake detection method that operates in the latent space of a state-of-the-art generative adversarial network (GAN) trained on high-quality face images. The proposed method leverages the structure of the latent space of StyleGAN to learn a lightweight binary classification model. Experimental results on standard datasets reveal that the proposed approach outperforms other state-of-the-art deepfake classification methods, especially in contexts where the data available to train the models is rare, such as when a new manipulation method is introduced. To the best of our knowledge, this is the first study showing the interest of the latent space of StyleGAN for deepfake classification. Combined with other recent studies on the interpretation and manipulation of this latent space, we believe that the proposed approach can further help in developing frugal deepfake classification methods based on interpretable high-level properties of face images.